References

[1]    L. Aaronson, C. Teel, V. Cassmeyer, G. Neuberger, L. Pallikkathayil, J. Pierce, A. Press, P. Williams, and A. Wingate. Defining and measuring fatigue. Journal of Nursing Scholarship, 31(1):45–50, June 2007. doi: 10.1111/j.1547-5069.1999.tb00420.x. URL https://doi.org/10.1111/j.1547-5069.1999.tb00420.x.

[2]    A. Ahir and V. Gohokar. Driver inattention monitoring system: A review. In International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET), pages 188–194, Shegoaon, India, December 2019. IEEE. doi: 10.1109/ICITAET47105.2019.9170249. URL https://doi.org/10.1109/ICITAET47105.2019.9170249.

[3]    C. Ahlström, G. Georgoulas, and K. Kircher. Towards a context-dependent multi-buffer driver distraction detection algorithm. IEEE Transactions on Intelligent Transportation Systems, 2021. doi: 10.1109/TITS.2021.3060168. URL https://doi.org/10.1109/TITS.2021.3060168.

[4]    E. Aidman, C. Chadunow, K. Johnson, and J. Reece. Real-time driver drowsiness feedback improves driver alertness and self-reported driving performance. Accident Analysis & Prevention, 81:8–13, August 2015. doi: 10.1016/j.aap.2015.03.041. URL https://doi.org/10.1016/j.aap.2015.03.041.

[5]    T. Åkerstedt and M. Gillberg. Subjective and objective sleepiness in the active individual. International Journal of Neuroscience, 52(1-2):29–37, June 1990. doi: 10.3109/00207459008994241. URL https://doi.org/10.3109/00207459008994241.

[6]    S. Alluhaibi, M. Al-Din, and A. Moyaid. Driver behavior detection techniques: A survey. International Journal of Applied Engineering Research, 13(11):8856–8861, 2018. URL https://www.ripublication.com/Volume/ijaerv13n11.htm.

[7]    H. Almahasneh, W.-T. Chooi, N. Kamel, and A. Malik. Deep in thought while driving: An EEG study on drivers’ cognitive distraction. Transportation Research Part F: Traffic Psychology and Behaviour, 26, Part A:218–226, September 2014. doi: 10.1016/j.trf.2014.08.001. URL https://doi.org/10.1016/j.trf.2014.08.001.

[8]    F. Alonso. Driving under the influence, volume 1, pages 392–394. SAGE, September 2019. doi: 10.4135/ 9781483392240.n130. URL https://doi.org/10.4135/9781483392240.n130.

[9]    F. Alonso, J. Pastor, L. Montoro, and C. Esteban. Driving under the influence of alcohol: frequency, reasons, perceived risk and punishment. Substance Abuse Treatment, Prevention, and Policy, 10(11):1–9, March 2015. doi: 10.1186/s13011-015-0007-4. URL https://doi.org/10.1186/s13011-015-0007-4.

[10]    A. Anund, G. Kecklund, B. Peters, Å. Forsman, L. Arne, and T. Åkerstedt. Driver impairment at night and its relation to physiological sleepiness. Scandinavian Journal of Work, Environment & Health, 34(2):142–150, April 2008. doi: 10.5271/sjweh.1193. URL https://doi.org/10.5271/sjweh.1193.

[11]    N. Apostoloff and A. Zelinsky. Robust vision based lane tracking using multiple cues and particle filtering. In IEEE Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), pages 558–563, Columbus, Ohio, USA, June 2003. doi: 10.1109/IVS.2003.1212973. URL https://doi.org/10.1109/IVS.2003.1212973.

[12]    J. Arnedt, G. Wilde, P. Munt, and A. MacLean. Simulated driving performance following prolonged wakefulness and alcohol consumption: separate and combined contributions to impairment. Journal of Sleep Research, 9(3):233–241, September 2000. doi: 10.1046/j.1365-2869.2000.00216.x. URL https://doi.org/10.1046/j.1365-2869.2000.00216.x.

[13]    S. Arun, K. Sundaraj, and M. Murugappan. Driver inattention detection methods: A review. In IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT), pages 1–6, Kuala Lumpur, Malaysia, October 2012. doi: 10.1109/STUDENT.2012.6408351. URL https://doi.org/10.1109/STUDENT.2012.6408351.

[14]    H. Attia, M. Takruri, and H. Ali. Electronic monitoring and protection system for drunk driver based on breath sample testing. In International Conference on Electronic Devices, Systems and Applications (ICEDSA), pages 1–4, Ras Al Khaimah, United Arab Emirates, December 2016. IEEE. doi: 10.1109/ICEDSA.2016.7818477. URL https://doi.org/10.1109/ICEDSA.2016.7818477.

[15]    M. Baccour, F. Driewer, T. Schack, and E. Kasneci. Camera-based driver drowsiness state classification using logistic regression models. In IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 1–8, Toronto, Ontario, Canada, October 2020. IEEE. doi: 10.1109/SMC42975.2020.9282918. URL https://doi.org/10.1109/SMC42975.2020.9282918.

[16]    B. Baheti, S. Gajre, and S. Talbar. Detection of distracted driver using convolutional neural network. In IEEE International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1032–1038, Salt Lake City, Utah, USA, June 2018. doi: 10.1109/CVPRW.2018.00150. URL https://doi.org/10.1109/CVPRW.2018.00150.

[17]    B. Bakker, B. Zabłocki, A. Baker, V. Riethmeister, B. Marx, G. Iyer, A. Anund, and C. Ahlström. A multi-stage, multi-feature machine learning approach to detect driver sleepiness in naturalistic road driving conditions. IEEE Transactions on Intelligent Transportation Systems, Early access:1–10, June 2021. doi: 10.1109/TITS. 2021.3090272. URL https://doi.org/10.1109/TITS.2021.3090272.

[18]    R. Balandong, R. Ahmad, M. Saad, and A. Malik. A review on EEG-based automatic sleepiness detection systems for driver. IEEE Access, 6:22908–22919, December 2018. doi: 10.1109/ACCESS.2018.2811723. URL https://doi.org/10.1109/ACCESS.2018.2811723.

[19]    S. Basu, J. Chakraborty, A. Bagb, and Md. Aftabuddin. A review on emotion recognition using speech. In International Conference on Inventive Communication and Computational Technologies (ICICCT), pages 109–114, Coimbatore, India, March 2017. doi: 10.1109/ICICCT.2017.7975169. URL https://doi.org/10.1109/ICICCT.2017.7975169.

[20]    S. Begum. Intelligent driver monitoring systems based on physiological sensor signals: A review. In International Conference on Intelligent Transportation Systems (ITSC), pages 282–289, The Hague, The Netherlands, October 2013. IEEE. doi: 10.1109/ITSC.2013.6728246. URL https://doi.org/10.1109/ITSC.2013.6728246.

[21]    L. Bergasa, J. Nuevo, M. Sotelo, R. Barea, and M. Lopez. Real-time system for monitoring driver vigilance. IEEE Transactions on Intelligent Transportation Systems, 7(1):63–77, 2006. doi: 10.1109/TITS.2006.869598. URL https://dx.doi.org/10.1109/TITS.2006.869598.

[22]    R. Berri and F. Osório. A nonintrusive system for detecting drunk drivers in modern vehicles. In Brazilian Conference on Intelligent Systems (BRACIS), pages 73–78, São Paulo, Brazil, October 2018. IEEE. doi: 10.1109/BRACIS.2018.00021. URL https:/doi.org/10.1109/BRACIS.2018.00021.

[23]    G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Babiloni. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44:58–75, July 2014. doi: 10.1016/j.neubiorev.2012.10.003. URL https://doi.org/10.1016/j.neubiorev.2012.10.003.

[24]    H. Bořil, P. Boyraz, and J. Hansen. Towards multimodal driver’s stress detection. In Digital Signal Processing for In-Vehicle Systems and Safety, pages 3–19. Springer, New York City, New York, USA, 2012. doi: 10.1007/978-1-4419-9607-7_1. URL https://doi.org/10.1007/978-1-4419-9607-7_1.

[25]    M. Bradley and P. Lang. Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1):49–59, 1994. doi: 10.1016/0005-7916(94)90063-9. URL https://doi.org/10.1016/0005-7916(94)90063-9.

[26]    M. Brown, M. Marmor, Vaegan, E. Zrenner, M. Brigell, and M. Bach. ISCEV standard for clinical electro-oculography (EOG) 2006. Documenta Ophthalmologica, 113:205–212, November 2006. doi: 10.1007/ s10633-006-9030-0. URL https://doi.org/10.1007/s10633-006-9030-0.

[27]    K. Campbell. The SHRP 2 naturalistic driving study. TR News, 282:30–35, September 2012. URL https://insight.shrp2nds.us/documents/shrp2_background.pdf.

[28]    M. Chacon-Murguia and C. Prieto-Resendiz. Detecting driver drowsiness: A survey of system designs and technology. IEEE Consumer Electronics Magazine, 4(4):107–119, October 2015. doi: 10.1109/MCE.2015.2463373. URL https://doi.org/10.1109/MCE.2015.2463373.

[29]    T. Chan, C. Chin, H. Chen, and X. Zhong. A comprehensive review of driver behavior analysis utilizing smartphones. IEEE Transactions on Intelligent Transportation Systems, 21(10):4444–4475, 2020. doi: 10.1109/TITS. 2019.2940481. URL https://doi.org/10.1109/TITS.2019.2940481.

[30]    N. Charniya and V. Nair. Drunk driving and drowsiness detection. In International Conference on Intelligent Computing and Control (I2C2), pages 1–6, Coimbatore, India, June 2017. IEEE. doi: 10.1109/I2C2.2017.8321811. URL https://doi.org/10.1109/I2C2.2017.8321811.

[31]    R. Chhabra, S. Verma, and C. R. Krishna. A survey on driver behavior detection techniques for intelligent transportation systems. In International Conference on Cloud Computing, Data Science & Engineering – Confluence, pages 36–41, Noida, India, January 2017. IEEE. doi: 10.1109/CONFLUENCE.2017.7943120. URL https://doi.org/10.1109/CONFLUENCE.2017.7943120.

[32]    A. Chowdhury, R. Shankaran, M. Kavakli, and M. M. Haque. Sensor applications and physiological features in drivers’ drowsiness detection: A review. IEEE Sensors Journal, 18(8):3055–3067, April 2018. doi: 10.1109/JSEN.2018.2807245. URL https://doi.org/10.1109/JSEN.2018.2807245.

[33]    Z. Christoforou, M. Karlaftis, and G. Yannis. Reaction times of young alcohol-impaired drivers. Accident Analysis & Prevention, 61:54–62, December 2013. doi: 10.1016/j.aap.2012.12.030. URL https://doi.org/10.1016/j.aap.2012.12.030.

[34]    W.-Y. Chung, T.-W. Chong, and B.-G. Lee. Methods to detect and reduce driver stress: A review. International Journal of Automotive Technology, 20(5):1051–1063, October 2019. doi: 10.1007/s12239-019-0099-3. URL https://doi.org/10.1007/s12239-019-0099-3.

[35]    R. Coetzer and G. Hancke. Driver fatigue fetection: A survey. In AFRICON, pages 1–6, Nairobi, Kenya, September 2009. IEEE. doi: 10.1109/AFRCON.2009.5308101. URL https://doi.org/10.1109/AFRCON.2009.5308101.

[36]    M. Critchley. On sleepening. Clinical Neurology and Neurosurgery, 94:121–122, 1992. doi: 10.1016/ 0303-8467(92)90044-4. URL https://doi.org/10.1016/0303-8467(92)90044-4.

[37]    L. Dababneh and M. El-Gindy. Driver vigilance level detection systems: A literature survey. International Journal of Vehicle Performance (IJVP), 2(1):1–29, 2015. doi: 10.1504/IJVP.2015.074120. URL https://doi.org/10.1504/IJVP.2015.074120.

[38]    V. Dahiphale and S. Rao. A review paper on portable driver monitoring system for teal time fatigue. In International Conference on Computing Communication Control and Automation, pages 558–560, Pune, India, February 2015. IEEE. doi: 10.1109/ICCUBEA.2015.115. URL https://doi.org/10.1109/ICCUBEA.2015.115.

[39]    J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan. Mobile phone based drunk driving detection. In International ICST Conference on Pervasive Computing Technologies for Healthcare, pages 1–8, Munich, Germany, March 2010. doi: 10.4108/ICST.PERVASIVEHEALTH2010.8901. URL https://doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8901.

[40]    A. de Santos Sierra, C. Ávila, G. del Pozo, and J. Casanova. Stress detection by means of stress physiological template. In World Congress on Nature and Biologically Inspired Computing, pages 131–136, Salamanca, Spain, October 2011. IEEE. doi: 10.1109/NaBIC.2011.6089448. URL https://doi.org/10.1109/NaBIC.2011.6089448.

[41]    D. Dinges, M. Mallis, G. Maislin, and J. Powell. Evaluation of techniques for ocular measurement as an index of fatigue and the basis for alertness management. Technical Report DOT HS 808 762, National Highway Traffic Safety Administration, Washington, District of Columbia, USA, April 1998.

[42]    D. Dinges, M. Mallis, G. Maislin, and J. Powell. PERCLOS, a valid psychophysiological measure of alertness as assessed by psychomotor vigilance. Technical Report FHWA-MCRT-98-006, FHWA, Washington, District of Columbia, USA, October 1998.

[43]    J.-M. Diverrez, N. Martin, and N. Pallamin. Stress interface inducer, a way to generate stress in laboratory conditions. In International Conference on Methods and Techniques in Behavioral Research (Measuring Behavior), pages 25–27, Dublin, Ireland, May 2016. URL https://hal.archives-ouvertes.fr/hal-01525678.

[44]    Y. Dong, Z. Hu, K. Uchimura, and N. Murayama. Driver inattention monitoring system for intelligent vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 12(2):596–614, June 2011. doi: 10.1109/TITS.2010.2092770. URL https://doi.org/10.1109/TITS.2010.2092770.

[45]    M. Dreißig, M. Baccour, T. Schäck, and E. Kasneci. Driver drowsiness classification based on eye blink and head movement features using the k-NN algorithm. In Symposium Series on Computational Intelligence (SSCI), pages 889–896, Canberra, Australia, December 2020. IEEE. doi: 10.1109/SSCI47803.2020.9308133. URL https://doi.org/10.1109/SSCI47803.2020.9308133.

[46]    F. Durso and S. Gronlund. Situation awareness, pages 283–314. John Wiley & Sons Ltd, 1999.

[47]    P. Ebrahimbabaie. Prediction of risk of an event using sensor signals, with application to the prevention of driving accidents due to drowsiness. PhD thesis, University of Liège, Belgium, December 2020. URL https://orbi.uliege.be/handle/2268/250646.

[48]    P. Ebrahimbabaie and J. Verly. Excellent potential of geometric Brownian motion (GBM) as a random process model for level of drowsiness signals. In International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNAL, pages 105–112, Madeira, Portugal, 2018. SciTePress. doi: 10.5220/0006545101050112. URL https://doi.org/10.5220/0006545101050112.

[49]    P. Ekman. Facial expression and emotion. American Psychologist, 48(4):384–392, April 1993. doi: 10.1037/ 0003-066X.48.4.384. URL https://doi.org/10.1037/0003-066X.48.4.384.

[50]    A. El Basiouni El Masri, H. Artail, and H. Akkary. Toward self-policing: detecting drunk driving behaviors through sampling CAN bus data. In International Conference on Electrical and Computing Technologies and Applications (ICECTA), pages 1–5, Ras Al Khaimah, United Arab Emirates, November 2017. IEEE. doi: 10.1109/ ICECTA.2017.8252037. URL https://doi.org/10.1109/ICECTA.2017.8252037.

[51]    A. El Khatib, C. Ou, and F. Karray. Driver inattention detection in the context of next-generation autonomous vehicles design: A survey. IEEE Transactions on Intelligent Transportation Systems, 21(11):4483–4496, November 2020. doi: 10.1109/TITS.2019.2940874. URL https://doi.org/10.1109/TITS.2019.2940874.

[52]    J. Engström and G. Markkula. Effects of visual and cognitive distraction on lane change test performance. In International Driving Symposium on Human Factors in Driver Assessment, pages 199–205, Stevenson, Washington, USA, July 2007. doi: 10.17077/drivingassessment.1237. URL https://doi.org/10.17077/drivingassessment.1237.

[53]    P. Forsman, B. Vila, R. Short, C. Mott, and H. Van Dongen. Efficient driver drowsiness detection at moderate levels of drowsiness. Accident Analysis & Prevention, 50(Supplement C):341–350, 2013. doi: 10.1016/j. aap.2012.05.005. URL http://www.sciencedirect.com/science/article/pii/S0001457512001571.

[54]    L. Fournier, G. Wilson, and C. Swain. Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training. International Journal of Psychophysiology, 31(2):129–145, 1999. doi: 10.1016/s0167-8760(98)00049-x. URL https://doi.org/10.1016/s0167-8760(98)00049-x.

[55]    C. François. Development and validation of algorithms for automatic and real-time characterization of drowsiness. PhD thesis, University of Liège, Belgium, October 2018. URL https://orbi.uliege.be/bitstream/2268/228889/1/DoctoralThesis_ClementineFrancois_October2018.pdf.

[56]    C. François, T. Hoyoux, T. Langohr, J. Wertz, and J. Verly. Tests of a new drowsiness characterization and monitoring system based on ocular parameters. International Journal of Environmental Research and Public Health, 13(2):174, January 2016. doi: 10.3390/ijerph13020174. URL https://doi.org/10.3390/ijerph13020174.

[57]    L. Fridman, P. Langhans, J. Lee, and B. Reimer. Driver gaze region estimation without use of eye movement. IEEE Transactions on Intelligent Transportation Systems, 31(3):49–56, May 2016. doi: 10.1109/MIS.2016. 47. URL http://doi.org/10.1109/MIS.2016.47.

[58]    L. Fridman, J. Lee, B. Reimer, and T. Victor. ‘Owl’ and ‘Lizard’: patterns of head pose and eye pose in driver gaze classification. IET Computer Vision, 10(4):308–313, 2016. doi: 10.1049/iet-cvi.2015.0296. URL http://doi.org/10.1049/iet-cvi.2015.0296.

[59]    L. Fridman, B. Reimer, B. Mehler, and W. Freeman. Cognitive load estimation in the wild. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–9, Montréal, Canada, April 2018. ACM. doi: 10.1145/3173574.3174226. URL https://doi.org/10.1145/3173574.3174226.

[60]    L. Fridman, D. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik, J. Terwilliger, A. Patsekin, J. Kindelsberger, L. Ding, S. Seaman, A. Mehler, A. Sipperley, A. Pettinato, B. Seppelt, L. Angell, B. Mehler, and B. Reimer. MIT advanced vehicle technology study: large-scale naturalistic driving study of driver behavior and interaction with automation. IEEE Access, 7:102021–102038, July 2019. doi: 10.1109/ACCESS.2019.2926040. URL https://doi.org/10.1109/ACCESS.2019.2926040.

[61]    T. Gable, A. Kun, B. Walker, and R. Winton. Comparing heart rate and pupil size as objective measures of workload in the driving context: initial look. In Adjunct Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pages 20–25, Nottingham, England, UK, September 2015. ACM. doi: 10.1145/2809730.2809745. URL https://doi.org/10.1145/2809730.2809745.

[62]    H. Gao, A. Yüce, and J.-P. Thiran. Detecting emotional stress from facial expressions for driving safety. In IEEE International Conference on Image Processing (ICIP), pages 5961–5965, Paris, France, October 2014. doi: 10.1109/ICIP.2014.7026203. URL https://doi.org/10.1109/ICIP.2014.7026203.

[63]    H. Garrisson, A. Scholey, E. Ogden, and S. Benson. The effects of alcohol intoxication on cognitive functions critical for driving: A systematic review. Accident Analysis & Prevention, 154:1–11, May 2021. doi: 10.1016/j.aap.2021.106052. URL https://doi.org/10.1016/j.aap.2021.106052.

[64]    M. Gavrilescu and N. Vizireanu. Feedforward neural network-based architecture for predicting emotions from speech. Data, 4(3):1–23, July 2019. doi: 10.3390/data4030101. URL https://doi.org/10.3390/data4030101.

[65]    R. Ghandour, B. Neji, A. El-Rifaie, and Z. Al Barakeh. Driver distraction and stress detection systems: A review. International Journal of Engineering and Applied Sciences (IJEAS), 7(4), April 2020. doi: 10.31873/IJEAS.7.04. 10. URL https://doi.org/10.31873/IJEAS.7.04.10.

[66]    H. Godthelp, P. Milgram, and G. Blaauw. The development of a time-related measure to describe driving strategy. Human Factors, 26(3):257–268, June 1984. doi: 10.1177/001872088402600302.

[67]    J. Gonçalves and K. Bengler. Driver state monitoring systems–transferable knowledge manual driving to HAD. Procedia Manufacturing, 3:3011–3016, 2015. doi: 10.1016/j.promfg.2015.07.845. URL https://doi.org/10.1016/j.promfg.2015.07.845.

[68]    P. Gouverneur, J. Jaworek-Korjakowska, L. Köping, K. Shirahama, P. Kleczek, and M. Grzegorzek. Classification of physiological data for emotion recognition. In International Conference on Artificial Intelligence and Soft Computing (ICAISC), volume 10245 of Lecture Notes in Computer Science, pages 619–627. Springer, May 2017. doi: 10.1007/978-3-319-59063-9_55. URL https://doi.org/10.1007/978-3-319-59063-9_55.

[69]    C. Gunn, M. Mackus, C. Griffin, M. Munafò, and S. Adams. A systematic review of the next-day effects of heavy alcohol consumption on cognitive performance. Addiction, 113(12):2182–2193, August 2018. doi: 10.1111/add.14404. URL https://doi.org/10.1111/add.14404.

[70]    J. Gutiérrez, V. Rodríguez, and S. Martin. Comprehensive review of vision-based fall detection systems. Sensors, 21(3):1–50, February 2021. doi: 10.3390/s21030947. URL https://doi.org/10.3390/s21030947.

[71]    X. Hao, Z. Wang, F. Yang, Y. Wang, Y. Guo, and K. Zhang. The effect of traffic on situation awareness and mental workload: simulator-based study. In International Conference on Engineering Psychology and Cognitive Ergonomics (EPCE), pages 288–296. Springer, 2007. doi: 10.1007/978-3-540-73331-7_31. URL https://doi.org/10.1007/978-3-540-73331-7_31.

[72]    J. Harbluk, Y. Noy, P. Trbovich, and M. Eizenman. An on-road assessment of cognitive distraction: impacts on drivers’ visual behavior and braking performance. Accident Analysis & Prevention, 39(2):372–379, March 2007. doi: 10.1016/j.aap.2006.08.013. URL https://doi.org/10.1016/j.aap.2006.08.013.

[73]    V. Hargutt and H. Kruger. Eyelid movements and their predictive value for fatigue stages. In International Conference on Traffic and Transport Psychology (ICTTP), Bern, Switzerland, September 2000.

[74]    H. Harkous and H. Artail. A two-stage machine learning method for highly-accurate drunk driving detection. In International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pages 1–6, Barcelona, Spain, October 2019. IEEE. doi: 10.1109/WiMOB.2019.8923366. URL https://doi.org/10.1109/WiMOB.2019.8923366.

[75]    H. Harkous, C. Bardawil, H. Artail, and N. Daher. Application of hidden Markov model on car sensors for detecting drunk drivers. In IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), pages 1–6, Beirut, Lebanon, November 2018. IEEE. doi: 10.1109/IMCET.2018.8603030. URL https://doi.org/10.1109/IMCET.2018.8603030.

[76]    S. Hart and L. Staveland. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Advances in Psychology, 52:139–183, 1988. doi: 10.1016/s0166-4115(08)62386-9. URL http://doi.org/10.1016/s0166-4115(08)62386-9.

[77]    J. Healey and R. Picard. Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2):156–166, June 2005. doi: 10.1109/TITS.2005.848368. URL https://doi.org/10.1109/TITS.2005.848368.

[78]    T. Hecht, A. Feldhütter, J. Radlmayr, Y. Nakano, Y. Miki, C. Henle, and K. Bengler. A review of driver state monitoring systems in the context of automated driving. In Congress of the International Ergonomics Association (IEA), pages 398–408, Florence, Italy, August 2018. Springer. doi: 10.1007/978-3-319-96074-6_43. URL https://doi.org/10.1007/978-3-319-96074-6_43.

[79]    G. Hermosilla, J. Verdugo, G. Farias, E. Vera, F. Pizarro, and M. Machuca. Face recognition and drunk classification using infrared face images. Journal of Sensors, 2018:1–8, January 2018. doi: 10.1155/2018/5813514. URL https://doi.org/10.1155/2018/5813514.

[80]    E. Hoddes, V. Zarcone, H. Smythe, R. Phillips, and W. Dement. Quantification of sleepiness: A new approach. Psychophysiology, 10(4):431–436, July 1973. doi: 10.1111/j.1469-8986.1973.tb00801.x.

[81]    H. Hu, Z. Zhu, Z. Gao, and R. Zheng. Analysis on biosignal characteristics to evaluate road rage of younger drivers: A driving simulator study. In IEEE Intelligent Vehicles Symposium, volume IV, pages 156–161, Changshu, China, June 2018. IEEE. doi: 10.1109/IVS.2018.8500444. URL https://doi.org/10.1109/IVS.2018.8500444.

[82]    T.-Y. Hu, X. Xie, and J. Li. Negative or positive? the effect of emotion and mood on risky driving. Transportation Research Part F: Traffic Psychology and Behaviour, 16:29–40, January 2013. doi: 10.1016/j.trf.2012.08. 009. URL https://doi.org/10.1016/j.trf.2012.08.009.

[83]    M. Hultman, I. Johansson, F. Lindqvist, and C. Ahlström. Driver sleepiness detection with deep neural networks using electrophysiological data. Physiological Measurement, 42(3), 2021. doi: 10.1088/1361-6579/abe91e. URL https://doi.org/10.1088/1361-6579/abe91e.

[84]    C. Irwin, E. Iudakhina, B. Desbrow, and D. McCartney. Effects of acute alcohol consumption on measures of simulated driving: A systematic review and meta-analysis. Accident Analysis & Prevention, 102:248–266, May 2017. doi: 10.1016/j.aap.2017.03.001. URL https://doi.org/10.1016/j.aap.2017.03.001.

[85]    S. Izumi, D. Matsunaga, R. Nakamura, H. Kawaguchi, and M. Yoshimoto. A contact-less heart rate sensor system for driver health monitoring, 2017.

[86]    C. Jacobé de Naurois, C. Bourdin, A. Stratulat, E. Diaz, and J.-L. Vercher. Detection and prediction of driver drowsiness using artificial neural network models. Accident Analysis & Prevention, 126:95–104, May 2019. doi: 10.1016/j.aap.2017.11.038. URL https://doi.org/10.1016/j.aap.2017.11.038.

[87]    M. Jeong and B. Ko. Driver’s facial expression recognition in real-time for safe driving. Sensors, 18(12):1–17, 2018. doi: 10.3390/s18124270. URL https://doi.org/10.3390/s18124270.

[88]    M. Johns. A sleep physiologist’s view of the drowsy driver. Transportation Research Part F: Traffic Psychology and Behaviour, 3(4):241–249, December 2000. doi: 10.1016/S1369-8478(01)00008-0. URL https://doi.org/10.1016/S1369-8478(01)00008-0.

[89]    M. Johns. Assessing the drowsiness of drivers, 2001. Unpublished report commissioned by VicRoads.

[90]    M. Johns, A. Tucker, and R. Chapman. Monitoring the drowsiness of drivers: A new method based on the velocity of eyelid movements. In World Congress on Intelligent Transport Systems, pages 1–16, San Francisco, California, USA, November 2005.

[91]    M. Johns, S. Sibi, and W. Ju. Effect of cognitive load in autonomous vehicles on driver performance during transfer of control. In Adjunct Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’14, pages 1–4, Seattle, Washington, USA, September 2014. Association for Computing Machinery. doi: 10.1145/2667239.2667296. URL https://doi.org/10.1145/2667239.2667296.

[92]    T. Joye, K. Rocher, J. Déglon, J. Sidibé, B. Favrat, M. Augsburger, and A. Thomas. Driving under the influence of drugs: A single parallel monitoring-based quantification approach on whole blood. Frontiers in Chemistry, 8:1–10, August 2020. doi: 10.3389/fchem.2020.00626. URL https://doi.org/10.3389/fchem.2020.00626.

[93]    D. Kahneman, B. Tursky, D. Shapiro, and A. Crider. Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79(1):164–167, January 1969. doi: 10.1037/h0026952. URL https://doi.org/10.1037/h0026952.

[94]    S. Kajiwara. Evaluation of driver’s mental workload by facial temperature and electrodermal activity under simulated driving conditions. International Journal of Automative Technology, 15(1):65–70, 2014. doi: 10.1007/s12239-014-0007-9. URL https://doi.org/10.1007/s12239-014-0007-9.

[95]    H. Kang. Various approaches for driver and driving behavior monitoring: A review. In IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages 616–623, Sydney, NSW, Australia, December 2013. doi: 10.1109/ICCVW.2013.85. URL https://doi.org/10.1109/ICCVW.2013.85.

[96]    S. Kaplan, M. Guvensan, A. Yavuz, and Y. Karalurt. Driver behavior analysis for safe driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(6):3017–3032, 2015. doi: 10.1109/TITS.2015.2462084. URL https://dx.doi.org/10.1109/TITS.2015.2462084.

[97]    S. Kass, K. Cole, and C. Stanny. Effects of distraction and experience on situation awareness and simulated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 10(4):321–329, July 2007. doi: 10.1016/j.trf. 2006.12.002. URL https://doi.org/10.1016/j.trf.2006.12.002.

[98]    S.-A. Kaye, I. Lewis, and J. Freeman. Comparison of self-report and objective measures of driving behavior and road safety: A systematic review. Journal of Safety Research, 65:141–151, June 2018. doi: 10.1016/j.jsr.2018.02. 012. URL https://doi.org/10.1016/j.jsr.2018.02.012.

[99]    M. Khan and S. Lee. A comprehensive survey of driving monitoring and assistance systems. Sensors, 19(11): 1–32, June 2019. doi: 10.3390/s19112574. URL https://dx.doi.org/10.3390/s19112574.

[100]    S. Kiashari, A. Nahvi, H. Bakhoda, A. Homayounfard, and M. Tashakori. Evaluation of driver drowsiness using respiration analysis by thermal imaging on a driving simulator. Multimedia Tools and Applications, 79:17793–17815, July 2020. doi: 10.1007/s11042-020-08696-x. URL https://doi.org/10.1007/s11042-020-08696-x.

[101]    J. Kim, C. Jeong, M. Jung, J. Park, and D. Jung. Highly reliable driving workload analysis using driver electroencephalogram (EEG) activities during driving. International Journal of Automative Technology, 14(6): 965–970, 2013. doi: 10.1007/s12239-013-0106-z. URL https://doi.org/10.1007/s12239-013-0106-z.

[102]    A. Kircher, M. Uddman, and J. Sandin. Vehicle control and drowsiness. Technical report, VTI, Linköping, Sweden, May 2002.

[103]    K. Kircher and C. Ahlström. Minimum required attention: a human-centered approach to driver inattention. Human Factors, 59(3):471–484, October 2016. doi: 10.1177/0018720816672756. URL https://doi.org/10.1177/0018720816672756.

[104]    S. Kojima, S. Maeda, Y. Ogura, E. Fujita, K. Murata, T. Kamei, T. Tsuji, S. Kaneko, and M. Yoshizumi. Noninvasive biological sensor system for detection of drunk driving. In International Conference on Information Technology and Applications in Biomedicine (ITAB), pages 1–4, Larnaka, Cyprus, November 2009. IEEE. doi: 10.1109/ITAB.2009.5394324. URL https://doi.org/10.1109/ITAB.2009.5394324.

[105]    T. Kosch, M. Hassib, D. Buschek, and A. Schmidt. Look into my eyes: using pupil dilation to estimate mental workload for task complexity adaptation. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, pages 1–6, Montréal, Canada, April 2018. ACM. doi: 10.1145/3170427.3188643. URL https://doi.org/10.1145/3170427.3188643.

[106]    G. Koukiou and V. Anastassopoulos. Local difference patterns for drunk person identification. Multimedia Tools and Applications, 77:9293–9305, April 2018. doi: 10.1007/s11042-017-4892-6. URL https://doi.org/10.1007/s11042-017-4892-6.

[107]    B. Kumari and P. Kumar. A survey on drowsy driver detection system. In International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), pages 272–279, Chirala, India, March 2017. IEEE. doi: 10.1109/ICBDACI.2017.8070847. URL https://doi.org/10.1109/ICBDACI.2017.8070847.

[108]    S. Lal and A. Craig. A critical review of the psychophysiology of driver fatigue. Biological Psychology, 55(3): 173–194, February 2001. doi: 10.1016/S0301-0511(00)00085-5. URL https://doi.org/10.1016/S0301-0511(00)00085-5.

[109]    H. Laouz, S. Ayad, and L. Terrissa. Literature review on driverś drowsiness and fatigue detection. In International Conference on Intelligent Systems and Computer Vision (ISCV), pages 1–7, Fez, Morocco, June 2020. IEEE. doi: 10.1109/ISCV49265.2020.9204306. URL https://doi.org/10.1109/ISCV49265.2020.9204306.

[110]    A. Le, T. Suzuki, and H. Aoki. Evaluating driver cognitive distraction by eye tracking: From simulator to driving. Transportation Research Interdisciplinary Perspectives, 4:1–7, March 2020. doi: 10.1016/j.trip.2019.100087. URL https://doi.org/10.1016/j.trip.2019.100087.

[111]    T. Le, C. Zhu, Y. Zheng, K. Luu, and M. Savvides. Robust hand detection in vehicles. In IEEE International Conference on Pattern Recognition (ICPR), pages 573–578, Cancun, Mexico, December 2016. doi: 10.1109/ICPR. 2016.7899695. URL https://doi.org/10.1109/ICPR.2016.7899695.

[112]    T. Le, K. Quach, C. Zhu, C. Duong, K. Luu, and M. Savvides. Robust hand detection and classification in vehicles and in the wild. In IEEE International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 39–46, Honolulu, Hawaii, USA, 2017. IEEE. doi: 10.1109/CVPRW.2017.159. URL https://doi.org/10.1109/CVPRW.2017.159.

[113]    L. Leicht, E. Skobel, M. Mathissen, S. Leonhardt, S. Weyer, T. Wartzek, S. Reith, W. Möhler, and D. Teichmann. Capacitive ECG recording and beat-to-beat interval estimation after major cardiac event. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 7614–7617, Milan, Italy, August 2015. IEEE. doi: 10.1109/EMBC.2015.7320155. URL https://doi.org/10.1109/EMBC.2015.7320155.

[114]    S. Leonhardt, L. Leicht, and D. Teichmann. Unobtrusive vital sign monitoring in automotive environments - a review. Sensors, 18(9):1–38, September 2018. doi: 10.3390/s18093080. URL https://doi.org/10.3390/s18093080.

[115]    H. Li, J. Sun, Z. Xu, and L. Chen. Multimodal 2D+3D facial expression recognition with deep fusion convolutional neural network. IEEE Transactions on Multimedia, 19(12):2816–2831, December 2017. doi: 10.1109/ TMM.2017.2713408. URL https://doi.org/10.1109/TMM.2017.2713408.

[116]    R. Li, C. Liu, and F. Luo. A design for automotive CAN bus monitoring system. In IEEE Vehicle Power and Propulsion Conference, pages 1–5, Harbin, China, September 2008. IEEE. doi: 10.1109/VPPC.2008.4677544. URL https://doi.org/10.1109/VPPC.2008.4677544.

[117]    Z. Li, X. Jin, and X. Zhao. Drunk driving detection based on classification of multivariate time series. Journal of Safety Research, 54:61–67, September 2015. doi: 10.1016/j.jsr.2015.06.007. URL https://doi.org/10.1016/j.jsr.2015.06.007.

[118]    Z. Li, S. Bao, I. Kolmanovsky, and X. Yin. Visual-manual distraction detection using driving performance indicators with naturalistic driving data. IEEE Transactions on Intelligent Transportation Systems, 19(8):2528–2535, August 2017. doi: 10.1109/TITS.2017.2754467. URL https://doi.org/10.1109/TITS.2017.2754467.

[119]    Y. Liang and J. Lee. Combining cognitive and visual distraction: less than the sum of its parts. Accident Analysis & Prevention, 42(3):881–890, May 2010. doi: 10.1016/j.aap.2009.05.001. URL http://doi.org/10.1016/j.aap.2009.05.001.

[120]    Y. Liang, M. Reyes, and J. Lee. Real-time detection of driver cognitive distraction using support vector machines. IEEE Transactions on Intelligent Transportation Systems, 8(2):340–350, June 2007. doi: 10.1109/TITS.2007. 895298. URL https://doi.org/10.1109/TITS.2007.895298.

[121]    Y. Liang, W. Horrey, M. Howard, M. Lee, C. Anderson, M. Shreeve, C. O’Brien, and C. Czeisler. Prediction of drowsiness events in night shift workers during morning driving. Accident Analysis & Prevention, 126:105–114, May 2019. doi: 10.1016/j.aap.2017.11.004. URL https://www.sciencedirect.com/science/article/pii/S0001457517303913.

[122]    Y. Liao, S. Li, W. Wang, Y. Wang, G. Li, and B. Cheng. Detection of driver cognitive distraction: A comparison study of stop-controlled intersection and speed-limited highway. IEEE Transactions on Intelligent Transportation Systems, 17(6):1628–1637, June 2016. doi: 10.1109/TITS.2015.2506602. URL https://doi.org/10.1109/TITS.2015.2506602.

[123]    P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis. Explainable AI: A review of machine learning interpretability methods. Entropy, 23(1):1–45, 2021. doi: 10.3390/e23010018. URL https://doi.org/10.3390/e23010018.

[124]    H.-O. Lisper, H. Laurell, and J. van Loon. Relation between time to falling asleep behind the wheel on a closed track and changes in subsidiary reaction time during prolonged driving on a motorway. Ergonomics, 29 (3):445–453, 1986. doi: 10.1080/00140138608968278. URL https://doi.org/10.1080/00140138608968278.

[125]    C. Liu, S. Hosking, and M. Lenné. Predicting driver drowsiness using vehicle measures: recent insights and future challenges. Journal of Safety Research, 40(4):239–245, August 2009. doi: 10.1016/j.jsr.2009.04.005. URL https://doi.org/10.1016/j.jsr.2009.04.005.

[126]    F. Liu, X. Li, T. Lv, and F. Xu. A review of driver fatigue detection: progress and prospect. In IEEE International Conference on Consumer Electronics (ICCE), pages 1–6, Las Vegas, Nevada, USA, January 2019. IEEE. doi: 10.1109/ICCE.2019.8662098. URL https://doi.org/10.1109/ICCE.2019.8662098.

[127]    O. Lowenstein, R. Feinberg, and I. Loewenfeld. Pupillary movements during acute and chronic fatigue: A new test for the objective evaluation of tiredness. Investigative Ophthalmology & Visual Science, 2(2):138–157, April 1963.

[128]    S. Lu, F. Wei, and G. Li. The evolution of the concept of stress and the framework of the stress system. Cell Stress, 5(6):76–85, April 2021. doi: 10.15698/cst2021.06.250. URL https://doi.org/10.15698/cst2021.06.250.

[129]    M. Marillier and A. Verstraete. Driving under the influence of drugs. WIREs Forensic Science, 1(3):1–24, January 2019. doi: 10.1002/wfs2.1326. URL https://doi.org/10.1002/wfs2.1326.

[130]    C. Marina Martinez, M. Heucke, F. Wang, B. Gao, and D. Cao. Driving style recognition for intelligent vehicle control and advanced driver assistance: A survey. IEEE Transactions on Intelligent Transportation Systems, 19(3):666–676, 2018. doi: 10.1109/TITS.2017.2706978. URL https://dx.doi.org/10.1109/TITS.2017.2706978.

[131]    G. Marquart and J. de Winter. Workload assessment for mental arithmetic tasks using the task-evoked pupillary response. PeerJ Computer Science, 1:1–20, August 2015. ISSN 2376-5992. doi: 10.7717/peerj-cs.16. URL https://doi.org/10.7717/peerj-cs.16.

[132]    G. Marquart, C. Cabrall, and J. de Winter. Review of eye-related measures of drivers’ mental workload. Procedia Manufacturing, 3:2854–2861, 2015. ISSN 2351-9789. doi: /10.1016/j.promfg.2015.07.783. URL https://doi.org/10.1016/j.promfg.2015.07.783.

[133]    T. Martin, P. Solbeck, D. Mayers, R. Langille, Y. Buczek, and M. Pelletier. A review of alcohol-impaired driving: the role of blood alcohol concentration and complexity of the driving task. Journal of Forensic Sciences, 58(5):1238–1250, September 2013. doi: 10.1111/1556-4029.12227. URL https://doi.org/10.1111/1556-4029.12227.

[134]    A. Mashko. Review of approaches to the problem of driver fatigue and drowsiness. In Smart Cities Symposium Prague (SCSP), pages 1–5, Prague, Czech Republic, June 2015. IEEE. doi: 10.1109/SCSP.2015.7181569. URL https://doi.org/10.1109/SCSP.2015.7181569.

[135]    D. Mashru and V. Gandhi. Detection of a drowsy state of the driver on road using wearable sensors: A survey. In International Conference on Inventive Communication and Computational Technologies (ICICCT), pages 691–695, Coimbatore, India, April 2018. IEEE. doi: 10.1109/ICICCT.2018.8473245. URL https://doi.org/10.1109/ICICCT.2018.8473245.

[136]    S. Masood, A. Rai, A. Aggarwal, M. Doja, and M. Ahmad. Detecting distraction of drivers using convolutional neural network. Pattern Recognition Letters, 139:79–85, November 2020. doi: 10.1016/j.patrec.2017. 12.023. URL https://doi.org/10.1016/j.patrec.2017.12.023.

[137]    Q. Massoz. Non-invasive, automatic, and real-time characterization of drowsiness based on eye closure dynamics. PhD thesis, University of Liège, Belgium, April 2019. URL https://orbi.uliege.be/handle/2268/233355.

[138]    Q. Massoz, J. Verly, and M. Van Droogenbroeck. Multi-timescale drowsiness characterization based on a video of a driver’s face. Sensors, 18(9):1–17, August 2018. ISSN 1424-8220. doi: 10.3390/s18092801. URL http://doi.org/10.3390/s18092801.

[139]     J. May and C. Baldwin. Driver fatigue: the importance of identifying causal factors of fatigue when considering detection and countermeasure technologies. Transportation Research Part F: Traffic Psychology and Behaviour, 12(3): 218–224, May 2008. doi: 10.1016/j.trf.2008.11.005. URL https://doi.org/10.1016/j.trf.2008.11.005.

[140]    J. May, R. Kennedy, M. Williams, W. Dunlap, and J. Brannan. Eye movement indices of mental workload. Acta Psychologica, 75(1):75–89, October 1990. doi: 10.1016/0001-6918(90)90067-P. URL https://doi.org/10.1016/0001-6918(90)90067-P.

[141]    V. Melnicuk, S. Birrell, E. Crundall, and P. Jennings. Towards hybrid driver state monitoring: review, future perspectives and the role of consumer electronics. In IEEE Intelligent Vehicles Symposium, volume IV, pages 1392–1397, Gothenburg, Sweden, June 2016. IEEE. doi: 10.1109/IVS.2016.7535572. URL https://doi.org/10.1109/IVS.2016.7535572.

[142]    V. Melnicuk, S. Birrell, E. Crundall, and P. Jennings. Employing consumer electronic devices in physiological and emotional evaluation of common driving activities. In IEEE Intelligent Vehicles Symposium, volume IV, pages 1529–1534, Los Angeles, California, USA, June 2017. doi: 10.1109/IVS.2017.7995926. URL https://doi.org/10.1109/IVS.2017.7995926.

[143]    S. Menon, J. Swathi, S. Anit, A. Nair, and S. Sarath. Driver face recognition and sober drunk classification using thermal images. In International Conference on Communication and Signal Processing (ICCSP), pages 400–404, Chennai, India, April 2019. IEEE. doi: 10.1109/ICCSP.2019.8697908. URL https://doi.org/10.1109/ICCSP.2019.8697908.

[144]    M. Mets, E. Kuipers, L. de Senerpont Domis, M. Leenders, B. Olivier, and J. Verster. Effects of alcohol on highway driving in the STISIM driving simulator. Human Psychopharmacology: Clinical and Experimental, 26(6): 434–439, August 2011. doi: 10.1002/hup.1226. URL https://doi.org/10.1002/hup.1226.

[145]    L. Michael, S. Passmann, and R. Becker. Electrodermal lability as an indicator for subjective sleepiness during total sleep deprivation. Journal of Sleep Research, 21(4):470–478, August 2012. doi: 10.1111/j.1365-2869. 2011.00984.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2869.2011.00984.x.

[146]    A. Mittal, K. Kumar, S. Dhamija, and M. Kaur. Head movement-based driver drowsiness detection: A review of state-of-art techniques. In IEEE International Conference on Engineering and Technology (ICETECH), pages 903–908, Coimbatore, India, March 2016. doi: 10.1109/ICETECH.2016.7569378. URL https://doi.org/10.1109/ICETECH.2016.7569378.

[147]    T. Monk. A visual analogue scale technique to measure global vigor and affect. Psychiatry Research, 27(1):89–99, January 1989. ISSN 0165-1781. doi: 10.1016/0165-1781(89)90013-9. URL http://www.sciencedirect.com/science/article/pii/0165178189900139.

[148]    S. Mukherjee and N. Robertson. Deep head pose: gaze-direction estimation in multimodal video. IEEE Transactions on Multimedia, 17(11):2094–2107, November 2015. doi: 10.1109/TMM.2015.2482819. URL https://doi.org/10.1109/TMM.2015.2482819.

[149]    K. Murata, E. Fujita, S. Kojima, S. Maeda, Y. Ogura, T. Kamei, T. Tsuji, S. Kaneko, M. Yoshizumi, and N. Suzuki. Noninvasive biological sensor system for detection of drunk driving. IEEE Transactions on Information Technology in Biomedicine, 15(1):19–25, January 2011. doi: 10.1109/TITB.2010.2091646. URL https://doi.org/10.1109/TITB.2010.2091646.

[150]    R. Murthy, I. Pavlidis, and P. Tsiamyrtzis. Touchless monitoring of breathing function. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1196–1199, San Francisco, California, USA, 2004. doi: 10.1109/IEMBS.2004.1403382. URL https://doi.org/10.1109/IEMBS.2004.1403382.

[151]    S. Murugan, J. Selvaraj, and A. Sahayadhas. Analysis of different measures to detect driver states: A review. In IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), pages 1–6, Pondicherry, India, March 2019. doi: 10.1109/ICSCAN.2019.8878844. URL https://doi.org/10.1109/ICSCAN.2019.8878844.

[152]    A. Musabini and M. Chetitah. Heatmap-based method for estimating drivers’ cognitive distraction. CoRR, abs/2005.14136, May 2020. URL https://arxiv.org/abs/2005.14136.

[153]    I. Nair, N. Ebrahimkutty, B. Priyanka, M. Sreeja, and D. Gopu. A survey on driver fatigue-drowsiness detection system. International Journal of Engineering and Computer Science, 5(11):19237–19240, November 2016. doi: 10.18535/ijecs/v5i11.92. URL http://www.ijecs.in/index.php/ijecs/article/view/3093.

[154]    R. Naqvi, M. Arsalan, G. Batchuluun, H. Yoon, and K. Park. Deep learning-based gaze detection system for automobile drivers using a NIR camera sensor. Sensors, 18(2):1–34, February 2018. doi: 10.3390/s18020456. URL https://doi.org/10.3390/s18020456.

[155]    National Center for Statistics and Analysis. Overview of motor vehicle crashes in 2019. Technical report, National Highway Traffic Safety Administration, Washington, District of Columbia, USA, December 2020. Traffic Safety Facts Research Note. Report No. DOT HS 813 060.

[156]    M. Ngxande, J. Tapamo, and M. Burke. Driver drowsiness detection using behavioral measures and machine learning techniques: A review of state-of-art techniques. In Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), pages 156–161, Bloemfontein, South Africa, November 2017. IEEE. doi: 10.1109/RoboMech.2017.8261140. URL https://doi.org/10.1109/RoboMech.2017.8261140.

[157]    NHTSA. The visual detection of DWI motorists. Technical Report DOT HS 808 677, National Highway Traffic Safety Administration, 1998.

[158]    NHTSA. Overview of the National Highway Traffic Safety Administration’s driver distraction program. Technical report, National Highway Traffic Safety Administration, Washington, District of Columbia, USA, April 2010. DOT HS 811 299.

[159]    J. Nishiyama, K. Tanida, M. Kusumi, and Y. Hirata. The pupil as a possible premonitor of drowsiness. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1586–1589, Lyon, France, August 2007. IEEE. doi: 10.1109/IEMBS.2007.4352608.

[160]    A. Němcová, V. Svozilová, K. Bucsuházy, R. Smišek, M. Mézl, B. Hesko, M. Belák, M. Bilik, P. Maxera, M. Seitl, T. Dominik, M. Semela, M. Šucha, and R. Kolář. Multimodal features for detection of driver stress and fatigue: review. IEEE Transactions on Intelligent Transportation Systems, 22(6):3214–3233, June 2021. doi: 10.1109/TITS.2020.2977762. URL https://doi.org/10.1109/TITS.2020.2977762.

[161]    R. O’Donnel and F. Eggemeier. Workload assessment methodology, chapter 42, pages 1–49. Wiley, 1986.

[162]    S. Ollander, C. Godin, A. Campagne, and S. Charbonnier. A comparison of wearable and stationary sensors for stress detection. In IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 4362–4366, Budapest, Hungary, October 2016. IEEE. doi: 10.1109/SMC.2016.7844917. URL https://doi.org/10.1109/SMC.2016.7844917.

[163]    M. Oscar-Berman, B. Shagrin, D. Evert, and C. Epstein. Impairments of brain and behavior: the neurological effects of alcohol. Alcohol Health and Research World, 21(1):65–75, 1997. URL https://pubmed.ncbi.nlm.nih.gov/15706764/.

[164]     O. Oviedo-Trespalacios, M. Haque, M. King, and S. Washington. Understanding the impacts of mobile phone distraction on driving performance: A systematic review. Transportation Research Part C: Emerging Technologies, 72: 360–380, November 2016. doi: 10.1016/j.trc.2016.10.006. URL https://doi.org/10.1016/j.trc.2016.10.006.

[165]    PAHO. Drinking and driving. Technical Report PAHO/NMH/18-011, Pan American Health Organization, 2018.

[166]    P. Palasek, N. Lavie, and L. Palmer. Attentional demand estimation with attentive driving models. In British Machine Vision Conference (BMVC), pages 1–13, Cardiff, Wales, September 2019.

[167]    P. Papantoniou, E. Papadimitriou, and G. Yannis. Review of driving performance parameters critical for distracted driving research. Transportation Research Procedia, 25:1796–1805, 2017. doi: 10.1016/j.trpro.2017.05.148. URL https://doi.org/10.1016/j.trpro.2017.05.148.

[168]    T. Partala and V. Surakka. Pupil size variation as an indication of affective processing. International Journal of Human-Computer Studies, 59(1-2):185–198, July 2003. doi: 10.1016/S1071-5819(03)00017-X. URL https://doi.org/10.1016/S1071-5819(03)00017-X.

[169]    J. Paxion, E. Galy, and C. Berthelon. Mental workload and driving. Frontiers in Psychology, 5:1344, December 2014. doi: 10.3389/fpsyg.2014.01344. URL https://doi.org/10.3389/fpsyg.2014.01344.

[170]    C. Pecher, C. Lemercier, and J.-M. Cellier. The influence of emotions on driving behavior. In Dwight Hennessy, editor, Traffic Psychology: An International Perspective, chapter 9, pages 1–27. Nova Science Publishers, December 2010. ISBN 978-1-61668-846-2.

[171]    R. Peck, M. Gebers, R. Voas, and E. Romano. The relationship between blood alcohol concentration (BAC), age, and crash risk. Journal of Safety Research, 39(3):311–319, 2008. doi: 10.1016/j.jsr.2008.02.030. URL https://doi.org/10.1016/j.jsr.2008.02.030.

[172]    A. Persson, H. Jonasson, I. Fredriksson, U. Wiklund, and C. Ahlström. Heart rate variability for classification of alert versus sleep deprived drivers in real road driving conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6):3316–3325, 2021. doi: 10.1109/TITS.2020.2981941. URL https://doi.org/10.1109/TITS.2020.2981941.

[173]    B. Pfleging, D. Fekety, A. Schmidt, and A. Kun. A model relating pupil diameter to mental workload and lighting conditions. In CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 5776–5788, Santa Clara, California, USA, 2016. ACM. ISBN 978-1-4503-3362-7. doi: 10.1145/2858036.2858117. URL http://doi.acm.org/10.1145/2858036.2858117.

[174]    B. Pratama, I. Ardiyanto, and T. Adji. A review on driver drowsiness based on image, bio-signal, and driver behavior. In International Conference on Science and Technology - Computer (ICST), pages 70–75, Yogyakarta, Indonesia, July 2017. doi: 10.1109/ICSTC.2017.8011855. URL https://doi.org/10.1109/ICSTC.2017.8011855.

[175]    M. Ragot, N. Martin, S. Em, N. Pallamin, and J.-M. Diverrez. Emotion recognition using physiological signals: laboratory vs. wearable sensors. In International Conference on Applied Human Factors and Ergonomics, volume 608 of Advances in Intelligent Systems and Computing, pages 15–22. Springer, 2017. doi: 10.1007/ 978-3-319-60639-2_2. URL https://doi.org/10.1007/978-3-319-60639-2_2.

[176]    M. Ramzan, H. Khan, S. Awan, A. Ismail, M. Ilyas, and A. Mahmood. A survey on state-of-the-art drowsiness detection techniques. IEEE Access, 7:61904–61919, 2019. doi: 10.1109/ACCESS.2019.2914373. URL https://dx.doi.org/10.1109/ACCESS.2019.2914373.

[177]    T. Ranney. Driver distraction: A review of the current state-of-knowledge. Technical report, National Highway Traffic Safety Administration, April 2008.

[178]    T. Ranney, E. Mazzae, R. Garrott, and M. Goodman. NHTSA driver distraction research: Past, present, and future. Technical report, SAE, July 2000.

[179]    A. Ray, A. Das, A. Kundu, A. Ghosh, and T. Rana. Prevention of driving under influence using microcontroller. In International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), pages 1–2, Kolkata, India, April 2017. IEEE. doi: 10.1109/IEMENTECH.2017.8077023. URL https://doi.org/10.1109/IEMENTECH.2017.8077023.

[180]    M. Regan, J. Lee, and K. Young. Driver distraction: theory, effects, and mitigation. CRC Press, 2008.

[181]    M. Regan, C. Hallett, and C. Gordon. Driver distraction and driver inattention: definition, relationship and taxonomy. Accident Analysis & Prevention, 43(5):1771–1781, September 2011. doi: 10.1016/j.aap.2011.04.008. URL https://doi.org/10.1016/j.aap.2011.04.008.

[182]    B. Reimer, B. Mehler, J. Coughlin, K. Godfrey, and C. Tan. An on-road assessment of the impact of cognitive workload on physiological arousal in young adult drivers. In International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’09, pages 115–118, Essen, Germany, September 2009. ACM. doi: 10.1145/1620509.1620531. URL https://doi.org/10.1145/1620509.1620531.

[183]    P. Rosero-Montalvo, V. López-Batista, and D. Peluffo-Ordóñez. Hybrid embedded-systems-based approach to in-driver drunk status detection using image processing and sensor networks. IEEE Sensors Journal, 21(14): 15729–15740, July 2021. doi: 10.1109/JSEN.2020.3038143. URL https://doi.org/10.1109/JSEN.2020.3038143.

[184]    J. Russell. Is there universal recognition of emotion from facial expression? A review of the cross-cultural studies. Psychological Bulletin, 115(1):102, January 1994. doi: 10.1037/0033-2909.115.1.102. URL https://doi.org/10.1037/0033-2909.115.1.102.

[185]    SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Technical Report SAE Standard J3016_202104, Society of Automobile Engineers, Warrendale, PA, USA, April 2021. URL https://doi.org/10.4271/J3016_202104.

[186]    A. Sahayadhas, K. Sundaraj, and M. Murugappan. Detecting driver drowsiness based on sensors: A review. Sensors, 12(12):16937–16953, December 2012. doi: 10.3390/s121216937. URL https://doi.org/10.3390/s121216937.

[187]    M. Sakairi. Water-cluster-detecting breath sensor and applications in cars for detecting drunk or drowsy driving. IEEE Sensors Journal, 12(5):1078–1083, May 2012. doi: 10.1109/JSEN.2011.2163816. URL https://doi.org/10.1109/JSEN.2011.2163816.

[188]    M. Sanders and E. McCormick. Human Factors in Engineering and Design, volume 25. Mcgraw-Hill Book Company, 1998. doi: 10.1108/ir.1998.25.2.153.2. URL https://doi.org/10.1108/ir.1998.25.2.153.2.

[189]    K. Sanghvi. Drunk driving detection. Computer Science and Information Technology, 6(2):24–30, 2018. doi: 10.13189/csit.2018.060202. URL https://doi.org/10.13189/csit.2018.060202.

[190]    S. Saponara, M. Greco, and F. Gini. Radar-on-chip/in-package in autonomous driving vehicles and intelligent transport systems: opportunities and challenges. IEEE Signal Processing Magazine, 36(5):71–84, September 2019. doi: 10.1109/MSP.2019.2909074. URL https://doi.org/10.1109/MSP.2019.2909074.

[191]    T. Schaap, A. Van der Horst, B. van Arem, and K. Brookhuis. The relationship between driver distraction and mental workload, volume 1, pages 63–80. CRC Press, 2013. ISBN 1409425851.

[192]    E. Schires, P. Georgiou, and T. Lande. Vital sign monitoring through the back using an UWB impulse radar with body coupled antennas. IEEE Transactions on Biomedical Circuits and Systems, 12(2):292–302, April 2018. doi: 10.1109/TBCAS.2018.2799322. URL https://doi.org/10.1109/TBCAS.2018.2799322.

[193]    R. Schleicher, N. Galley, S. Briest, and L. Galley. Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? Ergonomics, 51(7):982–1010, June 2008. doi: 10.1080/00140130701817062. URL https://doi.org/10.1080/00140130701817062.

[194]    E. Schröger, M.-H. Giard, and C. Wolff. Auditory distraction: event-related potential and behavioral indices. Clinical Neurophysiology, 111(8):1450–1460, August 2000. doi: 10.1016/s1388-2457(00)00337-0. URL https://doi.org/10.1016/s1388-2457(00)00337-0.

[195]    B. Scott-Parker. Emotions, behaviour, and the adolescent driver: A literature review. Transportation Research Part F: Traffic Psychology and Behaviour, 50:1–37, October 2017. doi: 10.1016/j.trf.2017.06.019. URL https://doi.org/10.1016/j.trf.2017.06.019.

[196]    I. Seth. A survey on driver behavior detection techniques. International Journal of Scientific Research in Science and Technology, 7(3):401–404, June 2020. doi: 10.32628/IJSRST207384. URL https://doi.org/10.32628/IJSRST207384.

[197]    M. Sevil, I. Hajizadeh, S. Samadi, J. Feng, C. Lazaro, N. Frantz, X. Yu, R. Brandt, Z. Maloney, and A. Cinar. Social and competition stress detection with wristband physiological signals. In IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN), pages 39–42, Eindhoven, The Netherlands, May 2017. doi: 10.1109/BSN.2017.7936002. URL https://doi.org/10.1109/BSN.2017.7936002.

[198]    Z. Shameen, M. Yusoff, M. Saad, A. Malik, and M. Muzammel. Electroencephalography (EEG) based drowsiness detection for drivers: A review. ARPN Journal of Engineering and Applied Sciences, 13(4):1458–1464, February 2018. ISSN 1819-6608.

[199]    J. Shen, J. Barbera, and C. Shapiro. Distinguishing sleepiness and fatigue: focus on definition and measurement. Sleep Medecine Reviews, 10(1):63–76, February 2006. doi: 10.1016/j.smrv.2005.05.004. URL https://doi.org/10.1016/j.smrv.2005.05.004.

[200]    Y. Shi, N. Ruiz, R. Taib, E. Choi, and F. Chen. Galvanic skin response (GSR) as an index of cognitive load. In CHI Extended Abstracts on Human Factors in Computing Systems, CHI EA ’07, pages 2651–2656, San Jose, California, USA, April-May 2007. ACM. doi: 10.1145/1240866.1241057. URL https://doi.org/10.1145/1240866.1241057.

[201]    M. Shirazi and A. Rad. Detection of intoxicated drivers using online system identification of steering behavior. IEEE Transactions on Intelligent Transportation Systems, 15(4):1738–1747, August 2014. doi: 10.1109/TITS. 2014.2307891. URL https://doi.org/10.1109/TITS.2014.2307891.

[202]    M. Sigari, M. Pourshahabi, M. Soryani, and M. Fathy. A review on driver face monitoring systems for fatigue and distraction detection. International Journal of Advanced Science and Technology, 64:73–100, 2014. doi: 10.14257/ijast.2014.64.07. URL https://doi.org/10.14257/ijast.2014.64.07.

[203]    G. Sikander and S. Anwar. Driver fatigue detection systems: A review. IEEE Transactions on Intelligent Transportation Systems, 20(6):2339–2352, June 2019. doi: 10.1109/TITS.2018.2868499. URL https://doi.org/10.1109/TITS.2018.2868499.

[204]    H. Silva, A. Lourenço, and A. Fred. In-vehicle driver recognition based on hand ECG signals. In ACM International Conference on Intelligent User Interfaces (IUI), pages 25–28, Lisbon, Portugal, February 2012. doi: 10.1145/2166966.2166971. URL https://doi.org/10.1145/2166966.2166971.

[205]    H. Singh and A. Kathuria. Analyzing driver behavior under naturalistic driving conditions: A review. Accident Analysis & Prevention, 150:1–21, February 2021. doi: 10.1016/j.aap.2020.105908. URL https://doi.org/10.1016/j.aap.2020.105908.

[206]    S. Singh. Critical reasons for crashes investigated in the National Motor Vehicle Crash Causation Survey. Technical report, National Highway Traffic Safety Administration, Washington, District of Columbia, USA, March 2018. URL https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812506.

[207]    J. Sodnik, C. Dicke, S. Tomažič, and M. Billinghurst. A user study of auditory versus visual interfaces for use while driving. International Journal of Human-Computer Studies, 66(5):318–332, May 2008. doi: 10.1016/j.ijhcs. 2007.11.001. URL https://doi.org/10.1016/j.ijhcs.2007.11.001.

[208]    L. Son, T. Suzuki, and H. Aoki. Evaluation of cognitive distraction in a real vehicle based on the reflex eye movement. International Journal of Automotive Engineering, 9(1):1–8, February 2018. doi: 10.20485/jsaeijae.9.1_1. URL https://doi.org/10.20485/jsaeijae.9.1_1.

[209]    A. Sonnleitner, M. Treder, M. Simon, S. Willmann, A. Ewald, A. Buchner, and M. Schrauf. EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study. Accident Analysis & Prevention, 62:110–118, January 2014. doi: 10.1016/j.aap.2013.08.026. URL https://doi.org/10.1016/j.aap.2013.08.026.

[210]    D. Strayer and F. Drews. Cell-phone – induced driver distraction. Current Directions in Psychological Science, 16(3):128–131, 2007. doi: 10.1111/j.1467-8721.2007.00489.x. URL https://doi.org/10.1111/j.1467-8721.2007.00489.x.

[211]    D. Strayer, J. Cooper, J. Turrill, J. Coleman, N. Medeiros-Ward, and F. Biondi. Measuring cognitive distraction in the automobile. Technical report, AAA, Foundation for Traffic Safety, Washington, District of Columbia, USA, 2013.

[212]    D. Strayer, J. Turrill, J. Cooper, J. Coleman, N. Medeiros-Ward, and F. Biondi. Assessing cognitive distraction in the automobile. Human Factors, 57(8):1300–1324, December 2015. doi: 10.1177/0018720815575149. URL https://doi.org/10.1177/0018720815575149.

[213]    D. Subbaiah, P. Reddy, and K. Rao. Driver drowsiness detection methods: A comprehensive survey. International Journal of Research in Advent Technology, 7(3):992–997, March 2019. doi: 10.32622/ijrat.73201918. URL https://doi.org/10.32622/ijrat.73201918.

[214]    S. Tantisatirapong, W. Senavongse, and M. Phothisonothai. Fractal dimension based electroencephalogram analysis of drowsiness patterns. In International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pages 497–500, Chiang Mai, Thailand, May 2010. IEEE. URL https://ieeexplore.ieee.org/document/5491439.

[215]    I. Teyeb, O. Jemai, M. Zaied, and C. Amar. Vigilance measurement system through analysis of visual and emotional driver’s signs using wavelet networks. In International Conference on Intelligent Systems Design and Applications (ISDA), pages 140–147, Marrakech, Morocco, December 2015. IEEE. doi: 10.1109/ISDA.2015.7489215. URL https://doi.org/10.1109/ISDA.2015.7489215.

[216]    I. Teyeb, O. Jemai, M. Zaied, and C. Amar. Towards a smart car seat design for drowsiness detection based on pressure distribution of the driver’s body. In International Conference on Software Engineering Advances (ICSEA), pages 217–222, Rome, Italy, August 2016. ISBN 978-1-61208-498-5. URL http://www.thinkmind.org/index.php?view=article&articleid=icsea_2016_9_30_10258.

[217]    P. Thiffault and J. Bergeron. Monotony of road environment and driver fatigue: A simulator study. Accident Analysis & Prevention, 35(3):381–391, May 2003. doi: 10.1016/S0001-4575(02)00014-3. URL https://doi.org/10.1016/S0001-4575(02)00014-3.

[218]    L. Tijerina. Issues in the evaluation of driver distraction associated with in-vehicle information and telecommunications systems. Transportation Research Inc, 12:54–67, 2000.

[219]    W. Tu, L. Wei, W. Hu, Z. Sheng, H. Nicanfar, X. Hu, E. Ngai, and V. Leung. A survey on mobile sensing based mood-fatigue detection for drivers. In Smart City 3600, volume 166 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pages 3–15. Springer, 2016. doi: 10.1007/978-3-319-33681-7_1. URL https://doi.org/10.1007/978-3-319-33681-7_1.

[220]    C. Ukwuoma and C. Bo. Deep learning review on drivers drowsiness detection. In Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), pages 1–5, Bangkok, Thailand, December 2019. IEEE. doi: 10.1109/TIMES-iCON47539.2019.9024642. URL https://doi.org/10.1109/TIMES-iCON47539.2019.9024642.

[221]    J. Verster, A. Bervoets, S. de Klerk, R. Vreman, B. Olivier, T. Roth, and K. Brookhuis. Effects of alcohol hangover on simulated highway driving performance. Psychopharmacology, 231:2999–3008, August 2014. doi: 10.1007/s00213-014-3474-9. URL https://doi.org/10.1007/s00213-014-3474-9.

[222]    W. Verwey and D. Zaidel. Predicting drowsiness accidents from personal attributes, eye blinks and ongoing driving behaviour. Personality and Individual Differences, 28(1):123–142, January 2000. ISSN 0191-8869. doi: 10.1016/S0191-8869(99)00089-6. URL http://www.sciencedirect.com/science/article/pii/S0191886999000896.

[223]    F. Vicente, Z. Huang, X. Xiong, F. De la Torre, W. Zhang, and D. Levi. Driver gaze tracking and eyes off the road detection system. IEEE Transactions on Intelligent Transportation Systems, 16(4):2014–2027, August 2015. doi: 10.1109/TITS.2015.2396031. URL http://doi.org/10.1109/TITS.2015.2396031.

[224]    J. Vicente, P. Laguna, A. Bartra, and R. Bailón. Drowsiness detection using heart rate variability. Medical & Biological Engineering & Computing, 54(6):927–937, June 2016. ISSN 1741-0444. doi: 10.1007/s11517-015-1448-7. URL https://doi.org/10.1007/s11517-015-1448-7.

[225]    A. Vilaca, P. Cunha, and A. Ferreira. Systematic literature review on driving behavior. In International Conference on Intelligent Transportation Systems (ITSC), pages 1–8, Yokohama, Japan, October 2017. IEEE. doi: 10.1109/ITSC.2017.8317786. URL https://doi.org/10.1109/ITSC.2017.8317786.

[226]    E. Vincent, R. Gribonval, and C. Fevotte. Performance measurement in blind audio source separation. IEEE Transactions on Audio, Speech and Language Processing, 14(4):1462–1469, June 2006. doi: 10.1109/TSA.2005.858005. URL https://doi.org/10.1109/TSA.2005.858005.

[227]    U. Vismaya and E. Saritha. A review on driver distraction detection methods. In International Conference on Communication and Signal Processing (ICCSP), pages 483–487, Chennai, India, July 2020. IEEE. doi: 10.1109/ ICCSP48568.2020.9182316. URL https://doi.org/10.1109/ICCSP48568.2020.9182316.

[228]    P. Wan, C. Wu, Y. Lin, and X. Ma. On-road experimental study on driving anger identification model based on physiological features by ROC curve analysis. IET Intelligent Transport Systems, 11(5):290–298, May 2017. doi: 10.1049/iet-its.2016.0127. URL https://doi.org/10.1049/iet-its.2016.0127.

[229]    Q. Wang, J. Yang, M. Ren, and Y. Zheng. Driver fatigue detection: A survey. In World Congress on Intelligent Control and Automation, volume 2, pages 8587–8591, Dalian, China, June 2006. doi: 10.1109/WCICA.2006.1713656. URL https://doi.org/10.1109/WCICA.2006.1713656.

[230]    K. Welch, C. Harnett, and Y.-C. Lee. A review on measuring affect with practical sensors to monitor driver behavior. Safety, 5(4):1–18, October 2019. doi: 10.3390/safety5040072. URL https://doi.org/10.3390/safety5040072.

[231]    WHO. Global status report on road safety 2018: Summary. Technical Report WHO/NMH/NVI/18.20, World Health Organization, 2018.

[232]    C. Wickens, J. Hollands, S. Banbury, and R. Parasuraman. Engineering psychology and human performance. Psychology Press, 2015. doi: 10.4324/9781315665177. URL https://doi.org/10.4324/9781315665177.

[233]    W. Wierwille and L. Ellsworth. Evaluation of driver drowsiness by trained raters. Accident Analysis & Prevention, 26(5):571–581, October 1994. doi: 10.1016/0001-4575(94)90019-1. URL http://www.sciencedirect.com/science/article/pii/0001457594900191.

[234]    W. Wierwille, L. Ellsworth, S. Wreggit, R. Fairbanks, and C. Kirn. Research on vehicle-based driver status/performance monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness. Technical Report DOT HS 808 247, National Highway Traffic Safety Administration, Washington, District of Columbia, USA, December 1994.

[235]    B. Wilhelm, H. Wilhelm, H. Lüdtke, P. Streicher, and M. Adler. Pupillographic assessment of sleepiness in sleep-deprived healthy subjects. Sleep, 21(3):258–265, May 1998.

[236]    P. Wouters and J. Bos. Traffic accident reduction by monitoring driver behaviour with in-car data recorders. Accident Analysis & Prevention, 32(5):643–650, September 2000. doi: 10.1016/S0001-4575(99)00095-0. URL https://doi.org/10.1016/S0001-4575(99)00095-0.

[237]    C. Wu, K. Tsang, and H. Chi. A wearable drunk detection scheme for healthcare applications. In IEEE International Conference on Industrial Informatics (INDIN), pages 878–881, Poitiers, France, July 2016. IEEE. doi: 10.1109/INDIN.2016.7819284. URL https://doi.org/10.1109/INDIN.2016.7819284.

[238]    C. Wu, K. Tsang, H. Chi, and F. Hung. A precise drunk driving detection using weighted kernel based on electrocardiogram. Sensors, 16(5):1–9, May 2016. doi: 10.3390/s16050659. URL https://dx.doi.org/10.3390/s16050659.

[239]    G. Wusk and H. Gabler. Non-invasive detection of respiration and heart rate with a vehicle seat sensor. Sensors, 18(5):1–11, May 2018. doi: 10.3390/s18051463. URL https://doi.org/10.3390/s18051463.

[240]    S. Yan, Y. Teng, J. Smith, and B. Zhang. Driver behavior recognition based on deep convolutional neural networks. In International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pages 636–641, Changsha, China, August 2016. IEEE. doi: 10.1109/FSKD.2016.7603248. URL http://doi.org/10.1109/FSKD.2016.7603248.

[241]    H. Yokoyama, K. Eihata, J. Muramatsu, and Y. Fujiwara. Prediction of driver’s workload from slow fluctuations of pupil diameter. In International Conference on Intelligent Transportation Systems (ITSC), pages 1775–1780, Maui, HI, USA, November 2018. IEEE. doi: 10.1109/ITSC.2018.8569279. URL https://doi.org/10.1109/ITSC.2018.8569279.

[242]    K. Young and M. Regan. Driver distraction: A review of the literature, pages 379–405. Australasian College of Road Safety, 2007.

[243]    K. Young, M. Regan, and J. Lee. Measuring the effects of driver distraction: direct driving performance methods and measures, chapter 7, pages 85–105. CRC Press, 2009. ISBN 9780849374265.

[244]    N. Yusoff, R. Ahmad, C. Guillet, A. Malik, N. Saad, and F. Mérienne. Selection of measurement method for detection of driver visual cognitive distraction: A review. IEEE Access, 5:22844–22854, September 2017. doi: 10.1109/ACCESS.2017.2750743. URL https://doi.org/10.1109/ACCESS.2017.2750743.

[245]    É. Zablocki, H. Ben-Younes, P. Pérez, and M. Cord. Explainability of vision-based autonomous driving systems: Review and challenges. CoRR, abs/2101.05307, 2021. URL https://arxiv.org/abs/2101.05307.

[246]    P. Zador, S. Krawchuk, and R. Voas. Alcohol-related relative risk of driver fatalities and driver involvement in fatal crashes in relation to driver age and gender: An update using 1996 data. Journal of Studies on Alcohol, 61 (3):387–395, May 2000. doi: 10.15288/jsa.2000.61.387. URL https://doi.org/10.15288/jsa.2000.61.387.

[247]    F. Zapata, J. Matey, G. Montalvo, and C. García-Ruiz. Chemical classification of new psychoactive substances (NPS). Microchemical Journal, 163:1–13, April 2021. doi: 10.1016/j.microc.2020.105877. URL https://doi.org/10.1016/j.microc.2020.105877.

[248]    J. Zhang, W. Qiu, H. Fu, M. Zhang, and Q. Ma. Review of techniques for driver fatigue detection. Applied Mechanics and Materials, 433-435:928–931, October 2013. doi: 10.4028/www.scientific.net/AMM.433-435.928. URL https://doi.org/10.4028/www.scientific.net/AMM.433-435.928.

[249]    K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang. Fast visual tracking via dense spatio-temporal context learning. In European Conference on Computer Vision (ECCV), volume 8693 of Lecture Notes in Computer Science, pages 127–141. Springer, 2014. doi: 10.1007/978-3-319-10602-1_9. URL https://doi.org/10.1007/978-3-319-10602-1_9.

[250]    Q. Zhang, Q. Wu, Y. Zhou, X. Wu, Y. Ou, and H. Zhou. Webcam-based, non-contact, real-time measurement for the physiological parameters of drivers. Measurement, 100:311–321, March 2017. doi: 10.1016/j. measurement.2017.01.007. URL https://doi.org/10.1016/j.measurement.2017.01.007.

[251]    S. Zhang, S. Zhang, T. Huang, and W. Gao. Speech emotion recognition using deep convolutional neural network and discriminant temporal pyramid matching. IEEE Transactions on Multimedia, 20(6):1576–1590, June 2018. doi: 10.1109/TMM.2017.2766843. URL https://doi.org/10.1109/TMM.2017.2766843.

[252]    T. Zhang, W. Zheng, Z. Cui, Y. Zong, J. Yan, and K. Yan. A deep neural network-driven feature learning method for multi-view facial expression recognition. IEEE Transactions on Multimedia, 18(12):2528–2536, December 2016. doi: 10.1109/TMM.2016.2598092. URL https://doi.org/10.1109/TMM.2016.2598092.

[253]    M. Zhao, F. Adib, and D. Katabi. Emotion recognition using wireless signals. In Annual International Conference on Mobile Computing and Networking, pages 95–108, New York City, New York, USA, October 2016. ACM. doi: 10.1145/2973750.2973762. URL https://doi.org/10.1145/2973750.2973762.

[254]    Z. Zin, A. Rodzi, and N. Ibrahim. Vision based eye closeness classification for driver’s distraction and drowsiness using PERCLOS and support vector machines. In International Conference on Machine Vision (ICMV), volume 11041 of Proceedings of SPIE, Munich, Germany, March 2018. SPIE. doi: 10.1117/12.2522949. URL https://doi.org/10.1117/12.2522949.